Publikationen

 

Google Scholar Citations
MathSciNet Citations
MathSciNet ID

Publication list at UHH

 

Recent material

Niklas Kühl, Jörn Kröger, Martin Siebenborn, Michael Hinze, Thomas Rung: Adjoint Complement to the Volume-of-Fluid Method for Immiscible Flows. arXiv:2009.03957 (2020)

Alessandro Alla, Carmen Gräßle, Michael Hinze: Time adaptivity in model predictive control. arXiv:2009.01332 (2020)

Michael Hinze, Denis Korolev: A space-time certified reduced basis method for quasilinear parabolic partial differential equations. arXiv:2004.00548 (2020)

Evelyn Herberg, Michael Hinze: Variational discretization approach applied to an optimal control problem with bounded measure controls. arXiv:2003.14380 (2020) (accepted for publication)

N. Kühl, M. Hinze, T. Rung: Cahn-Hilliard Navier-Stokes Simulations for Marine Free-Surface Flows. arXiv:2002.04885 (2020)

M. Hinze, D. Korolev: Reduced basis methods for quasilinear elliptic PDEs with applications to permanent magnet synchronous motors. arXiv:2002.04288 (2020) (accepted for publication)

A. Agosti, P. Ciarletta, H. Garcke, M. Hinze: Learning patient-specific parameters for a diffuse interface glioblastoma model from neuroimaging data. M2AN (M2AN-Link).

C. Gräßle, M. Hinze, S. Volkwein: Model Order Reduction by Proper Orthogonal Decomposition. arXiv:1906.05188 (2019) 

C. Gräßle, M. Hintermüller, M. Hinze, T. Keil: Simulation and Control of a Nonsmooth Cahn-Hilliard Navier-Stokes System. arXiv:1907.04285 (2019)

E. Herberg, M. Hinze, H. Schumacher: Maximal discrete sparsity in parabolic optimal control with measures. arXiv:1804.10549 (2018), to appear in MCRF.

A. Ahmad Ali, M. Hinze: Reduced basis methods- an application to variational discretization of parametrized elliptic optimal control problems. SISC, accepted for publication. arXiv:1808.05687 (2018).

N. Kühl, P. M. Müller, A., M. Hinze, T. Rung: Decoupling of Control and Force Objective in Adjoint-Based Fluid Dynamic Shape Optimization.. AIAA Journal (2019), arXiv:1902.04918

M. Hinze and T. N. T. Quyen: Iterated total variation regularization with finite element methods for reconstruction the source term in elliptic systems. arXiv:1901.10278 (2019), to appear in Inverse Problems

C. Gräßle, M. Hinze, J. Lang, S. Ullmann: POD model order reduction with space-adapted snapshots for incompressible flows. arXiv:1810.03892 (2018), to appear in ACOM.

A. Ahmad Ali,K. Deckelnick, and M. Hinze: Global minima for optimal control of the obstacle problem. arXiv:1810.08556 (2018), to appear in ESAIM: Control, Optimisation and Calculus of Variations (COCV).

A. Ahmad Ali,K. Deckelnick, and M. Hinze: Sufficient conditions for unique global solutions in optimal control of semilinear equations with C1nonlinearity. arXiv:1902.09639, to appear in Control & Cybernetics.

 

2019

vonDaniels2019VDO
von Daniels, Nikolaus; Hinze, Michael (2019): Variational discretization of a control-constrained parabolic bang-bang optimal control problem. In: J. Comput. Math.. Bd. 37. Nr. 3. S. 361--387.

Garcke2019DIA
Garcke, Harald; Hinze, Michael; Kahle, Christian (2019): Diffuse interface approaches in atmosphere and ocean--- modeling and numerical implementation. In: Energy transfers in atmosphere and ocean. Springer, Cham. Bd. 1. S. 287--307.

Hinze2019ARA
Hinze, Michael; Hofmann, Bernd; Quyen, Tran Nhan Tam (2019): A regularization approach for an inverse source problem in elliptic systems from single Cauchy data. In: Numer. Funct. Anal. Optim.. Bd. 40. Nr. 9. S. 1080--1112.

Garcke2019OCO
Garcke, Harald; Hinze, Michael; Kahle, Christian (2019): Optimal control of time-discrete two-phase flow driven by a diffuse-interface model. In: ESAIM: COCV. Bd. 25. S. 13.

2018

Graessle2018PRM
Gräß le, Carmen; Hinze, Michael (2018): POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations. In: Adv. Comput. Math.. Bd. 44. Nr. 6. S. 1941--1978.

Garcke2018APF
Garcke, Harald; Hinze, Michael; Kahle, Christian; Lam, Kei Fong (2018): A phase field approach to shape optimization in Navier- Stokes flow with integral state constraints. In: Adv. Comput. Math.. Bd. 44. Nr. 5. S. 1345--1383.

Benner2018MRO
Benner, Peter; Faß bender, Heike; Hinze, Michael; Stykel, Tatjana; Zimmermann, Ralf (2018): Model reduction of complex dynamical systems: editorial of the special issue corresponding to a workshop held at SDU Odense, Denmark, January 11--13, 2017. In: Adv. Comput. Math.. Bd. 44. Nr. 6. S. 1687--1691.

Alla2018APS
Alla, Alessandro; Grässle, Carmen; Hinze, Michael (2018): A posteriori snapshot location for POD in optimal control of linear parabolic equations. In: ESAIM Math. Model. Numer. Anal.. Bd. 52. Nr. 5. S. 1847--1873.

AhmadAli2018EAF
Ahmad Ali, Ahmad; Deckelnick, Klaus; Hinze, Michael (2018): Error analysis for global minima of semilinear optimal control problems. In: Math. Control Relat. Fields. Bd. 8. Nr. 1. S. 195--215.

Hintermueller2018AGD
Hintermüller, Michael; Hinze, Michael; Kahle, Christian; Keil, Tobias (2018): A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard- Navier-Stokes system. In: Optim. Eng.. Bd. 19. Nr. 3. S. 629--662.

Hinze2018ICI
Hinze, Michael; Kaltenbacher, Barbara; Quyen, Tran Nhan Tam (2018): Identifying conductivity in electrical impedance tomography with total variation regularization. In: Numer. Math.. Bd. 138. Nr. 3. S. 723--765.

Hinze2018OCO
Hinze, Michael; Kahle, Christian (2018): Optimal control of two-phase flow with different densities. In: Oberwolfach Reports. Bd. 14. Nr. 1.

2017

Hintermueller2017FAA
Hintermüller, Michael; Hinze, Michael; Kahle, Christian; Keil, Tobias (2017): Fully adaptive and integrated numerical methods for. In: Transport processes at fluidic interfaces. Birkhäuser/Springer, Cham. S. 305--353.

Deckelnick2017AOS
Deckelnick, Klaus; Hinze, Michael; Jordan, Tobias (2017): An optimal shape design problem for plates. In: SIAM J. Numer. Anal.. Bd. 55. Nr. 1. S. 109--130.

AhmadAli2017MMC1
Ahmad Ali, Ahmad; Ullmann, Elisabeth; Hinze, Michael (2017): Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients. In: SIAM/ASA J. Uncertain. Quantif.. Bd. 5. Nr. 1. S. 466--492.

Hinze2017MOR
Hinze, Michael; Kunkel, Martin; Matthes, Ulrich; Vierling, Morten (2017): Model order reduction of integrated circuits in electrical networks. In: System reduction for nanoscale IC design. Springer, Cham. Bd. 20. S. 1--37.

2016

Gong2016FEM
Gong, Wei; Hinze, Michael; Zhou, Zhaojie (2016): Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. In: J. Sci. Comput.. Bd. 66. Nr. 3. S. 941--967.

Garcke2016SOF
Garcke, Harald; Hecht, Claudia; Hinze, Michael; Kahle, Christian; Lam, Kei Fong (2016): Shape optimization for surface functionals in Navier- Stokes flow using a phase field approach. In: Interfaces Free Bound.. Bd. 18. Nr. 2. S. 219--261.

Garcke2016ASA
Garcke, Harald; Hinze, Michael; Kahle, Christian (2016): A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. In: Appl. Numer. Math.. Bd. 99. S. 151--171.

Hinze2016MCI
Hinze, Michael; Quyen, Tran Nhan Tam (2016): Matrix coefficient identification in an elliptic equation with the convex energy functional method. In: Inverse Problems. Bd. 32. Nr. 8. S. 085007, 29.

AhmadAli2016GMF
Ahmad Ali, Ahmad; Deckelnick, Klaus; Hinze, Michael (2016): Global minima for semilinear optimal control problems. In: Comput. Optim. Appl.. Bd. 65. Nr. 1. S. 261--288.

Garcke2016OCO
Garcke, Harald; Hinze, Michael; Kahle, Christian (2016): Optimal control of time discrete two-phase flow governed by a diffuse interface model. In: PAMM. Bd. 16. Nr. 1. S. 785-786.

2015

Garcke2015NAO
Garcke, Harald; Hecht, Claudia; Hinze, Michael; Kahle, Christian (2015): Numerical approximation of phase field based shape and topology optimization for fluids. In: SIAM J. Sci. Comput.. Bd. 37. Nr. 4. S. A1846--A1871.

Benner2015ITT
Benner, Peter; Herzog, Roland; Hinze, Michael; Rösch, Arnd; Schiela, Anton; Schulz, Volker (2015): Introduction to the special issue for EUCCO 2013. In: Comput. Optim. Appl.. Bd. 62. Nr. 1. S. 1--3.

vonDaniels2015CTS
von Daniels, Nikolaus; Hinze, Michael; Vierling, Morten (2015): Crank-Nicolson time stepping and variational discretization of control-constrained parabolic optimal control problems. In: SIAM J. Control Optim.. Bd. 53. Nr. 3. S. 1182--1198.

2014

Gong2014APE
Gong, Wei; Hinze, Michael; Zhou, Zhaojie (2014): A priori error analysis for finite element approximation of parabolic optimal control problems with pointwise control. In: SIAM J. Control Optim.. Bd. 52. Nr. 1. S. 97--119.

Deckelnick2014AEB
Deckelnick, Klaus; Hinze, Michael (2014): A-priori error bounds for finite element approximation of elliptic optimal control problems with gradient constraints. In: Trends in PDE constrained optimization. Birkhäuser/Springer, Cham. Bd. 165. S. 365--382.

Hinze2014SNS
Hinze, Michael; Köster, Michael; Turek, Stefan (2014): Space-time Newton-multigrid strategies for nonstationary distributed and boundary flow control problems. In: Trends in PDE constrained optimization. Birkhäuser/Springer, Cham. Bd. 165. S. 383--401.

Hinze2014MPC
Hinze, Michael; Kahle, Christian (2014): Model Predictive Control of two-phase flow using a diffuse interface approach. In: PAMM. Bd. 14. Nr. 1. S. 731-732.

2013

Gong2013EEF
Gong, Wei; Hinze, Michael (2013): Error estimates for parabolic optimal control problems with control and state constraints. In: Comput. Optim. Appl.. Bd. 56. Nr. 1. S. 131--151.

Hinze2013MOR
Hinze, Michael; Matthes, Ulrich (2013): Model order reduction for networks of ODE and PDE systems. In: System modeling and optimization. Springer, Heidelberg. Bd. 391. S. 92--101.

Herkt2013CAO
Herkt, Sabrina; Hinze, Michael; Pinnau, Rene (2013): Convergence analysis of Galerkin POD for linear second order evolution equations. In: Electron. Trans. Numer. Anal.. Bd. 40. S. 321--337.

Hinze2013ANM
Hinze, Michael; Kahle, Christian (2013): A nonlinear model predictive concept for control of two- phase flows governed by the Cahn-Hilliard Navier-Stokes system. In: System modeling and optimization. Springer, Heidelberg. Bd. 391. S. 348--357.

Hinze2013ICO
Hinze, Michael; Kahle, Christian (2013): Instantaneous control of two-phase flow with different densities. In: Oberwolfach Reports. Bd. 10. Nr. 1.

Hinze2013MPC
Hinze, Michael; Kahle, Christian (2013): Model predictive control of variable density multiphase flow governed by diffuse interface models. In: Proceedings of the first IFAC Workshop on Control of Systems modeled by Partial Differential Equations. Bd. 1. Nr. 1. S. 127--132.

Hintermueller2013AAF
Hintermüller, Michael; Kahle, Christian; Hinze, Michael (2013): An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. In: J. Comput. Phys.. Bd. 235. S. 810--827.

2012

Hintermueller2012WBA
Hintermüller, M.; Hinze, Michael; Hoppe, Ronald H. W. (2012): Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state- constraints. In: J. Comput. Math.. Bd. 30. Nr. 2. S. 101--123.

Deckelnick2012CAE
Deckelnick, Klaus; Hinze, Michael (2012): Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs. In: Inverse Problems. Bd. 28. Nr. 11. S. 115015, 15.

Deckelnick2012ANO
Deckelnick, Klaus; Hinze, Michael (2012): A note on the approximation of elliptic control problems with bang-bang controls. In: Comput. Optim. Appl.. Bd. 51. Nr. 2. S. 931--939.

Guenther2012APE
Günther, Andreas; Hinze, Michael; Tber, Moulay Hicham (2012): A posteriori error representations for elliptic optimal control problems with control and state constraints. In: Constrained optimization and optimal control for partial differential equations. Birkhäuser/Springer Basel AG, Basel. Bd. 160. S. 303--317.

Frank2012ICL
Frank, Martin; Herty, Michael; Hinze, Michael (2012): Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. In: ZAMM Z. Angew. Math. Mech.. Bd. 92. Nr. 1. S. 8--24.

Hinze2012DOO
Hinze, Michael; Rösch, Arnd (2012): Discretization of optimal control problems. In: Constrained optimization and optimal control for partial differential equations. Birkhäuser/Springer Basel AG, Basel. Bd. 160. S. 391--430.

Hinze2012AGS
Hinze, Michael; Vierling, Morten (2012): A globalized semi-smooth Newton method for variational discretization of control constrained elliptic optimal control problems. In: Constrained optimization and optimal control for partial differential equations. Birkhäuser/Springer Basel AG, Basel. Bd. 160. S. 171--182.

Hinze2012OCO
Hinze, Michael; Vierling, Morten (2012): Optimal control of the Laplace-Beltrami operator on compact surfaces: concept and numerical treatment. In: J. Comput. Math.. Bd. 30. Nr. 4. S. 392--403.

Hinze2012TSN
Hinze, Michael; Vierling, Morten (2012): The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization. In: Optim. Methods Softw.. Bd. 27. Nr. 6. S. 933--950.

Hinze2012RBS
Hinze, Michael; Kunkel, Martin (2012): Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks. In: ZAMM Z. Angew. Math. Mech.. Bd. 92. Nr. 2. S. 91--104.

Hinze2012ASM
Hinze, Michael; Köster, Michael; Turek, Stefan (2012): A space-time multigrid method for optimal flow control. In: Constrained optimization and optimal control for partial differential equations. Birkhäuser/Springer Basel AG, Basel. Bd. 160. S. 147--170.

2011

Guenther2011ECP
Günther, Andreas; Hinze, Michael (2011): Elliptic control problems with gradient constraints--- variational discrete versus piecewise constant controls. In: Comput. Optim. Appl.. Bd. 49. Nr. 3. S. 549--566.

Deckelnick2011VDO
Deckelnick, Klaus; Hinze, Michael (2011): Variational discretization of parabolic control problems in the presence of pointwise state constraints. In: J. Comput. Math.. Bd. 29. Nr. 1. S. 1--15.

Deckelnick2011IOM
Deckelnick, Klaus; Hinze, Michael (2011): Identification of matrix parameters in elliptic PDEs. In: Control Cybernet.. Bd. 40. Nr. 4. S. 957--969.

Abbeloos2011NMM
Abbeloos, Dirk; Diehl, Moritz; Hinze, Michael; Vandewalle, Stefan (2011): Nested multigrid methods for time-periodic, parabolic optimal control problems. In: Comput. Vis. Sci.. Bd. 14. Nr. 1. S. 27--38.

Hinze2011DOI
Hinze, Michael; Schiela, Anton (2011): Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. In: Comput. Optim. Appl.. Bd. 48. Nr. 3. S. 581--600.

Hinze2011PMO
Hinze, Michael; Kunkel, Martin; Vierling, Morten (2011): POD model order reduction of drift-diffusion equations in electrical networks. In: Model reduction for circuit simulation. Springer, Dordrecht. Bd. 74. S. 177--192.

2010

Hinze2010POT
Hinze, Michael; Schulz, Volker (2010): Preface of the guest-editors [PDE constrained optimization]. In: GAMM-Mitt.. Bd. 33. Nr. 2. S. 131--132.

Sternberg2010AMI
Sternberg, Julia; Hinze, Michael (2010): A memory-reduced implementation of the Newton-CG method in optimal control of nonlinear time-dependent PDEs. In: Optim. Methods Softw.. Bd. 25. Nr. 4-6. S. 553--571.

Hinze2010DCV
Hinze, Michael; Tröltzsch, Fredi (2010): Discrete concepts versus error analysis in PDE-constrained optimization. In: GAMM-Mitt.. Bd. 33. Nr. 2. S. 148--162.

2009

Hintermueller2009MRI
Hintermüller, Michael; Hinze, Michael (2009): Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. In: SIAM J. Numer. Anal.. Bd. 47. Nr. 3. S. 1666--1683.

Deckelnick2009FEA1
Deckelnick, Klaus; Günther, Andreas; Hinze, Michael (2009): Finite element approximation of elliptic control problems with constraints on the gradient. In: Numer. Math.. Bd. 111. Nr. 3. S. 335--350.

Deckelnick2009FEA
Deckelnick, Klaus; Günther, Andreas; Hinze, Michael (2009): Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. In: SIAM J. Control Optim.. Bd. 48. Nr. 4. S. 2798--2819.

Hinze2009ANO
Hinze, Michael; Matthes, Ulrich (2009): A note on variational discretization of elliptic Neumann boundary control. In: Control Cybernet.. Bd. 38. Nr. 3. S. 577--591.

Hinze2009VDF
Hinze, Michael; Yan, Ningning; Zhou, Zhaojie (2009): Variational discretization for optimal control governed by convection dominated diffusion equations. In: J. Comput. Math.. Bd. 27. Nr. 2-3. S. 237--253.

2007

Deckelnick2007COA
Deckelnick, Klaus; Hinze, Michael (2007): Convergence of a finite element approximation to a state-constrained elliptic control problem. In: SIAM J. Numer. Anal.. Bd. 45. Nr. 5. S. 1937--1953.

Burger2007OMF
Burger, Martin; Hinze, Michael; Pinnau, Rene (2007): Optimization models for semiconductor dopant profiling. In: Transport phenomena and kinetic theory. Birkhäuser Boston, Boston, MA. S. 91--115.

Hinze2007OAM
Hinze, Michael; Matthes, Ulrich (2007): Optimal and model predictive control of the Boussinesq approximation. In: Control of coupled partial differential equations. Birkhäuser, Basel. Bd. 155. S. 149--174.

Hinze2007OCO1
Hinze, Michael; Ziegenbalg, Stefan (2007): Optimal control of the free boundary in a two-phase Stefan problem. In: J. Comput. Phys.. Bd. 223. Nr. 2. S. 657--684.

Hinze2007MTI
Hinze, Michael; Pinnau, Rene (2007): Mathematical tools in optimal semiconductor design. In: Bull. Inst. Math. Acad. Sin. (N.S.). Bd. 2. Nr. 2. S. 569--586.

Hinze2007OCO
Hinze, Michael; Ziegenbalg, Stefan (2007): Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. In: ZAMM Z. Angew. Math. Mech.. Bd. 87. Nr. 6. S. 430--448.

2006

Baerwolff2006OOS
Bärwolff, Günter; Hinze, Michael (2006): Optimization of semiconductor melts. In: ZAMM Z. Angew. Math. Mech.. Bd. 86. Nr. 6. S. 423--437.

Hinze2006AOM
Hinze, Michael; Walther, Andrea; Sternberg, Julia (2006): An optimal memory-reduced procedure for calculating adjoints of the instationary Navier-Stokes equations. In: Optimal Control Appl. Methods. Bd. 27. Nr. 1. S. 19--40.

2005

Griesse2005DSO
Griesse, Roland; Hintermüller, Michael; Hinze, Michael (2005): Differential stability of control-constrained optimal control problems for the Navier-Stokes equations. In: Numer. Funct. Anal. Optim.. Bd. 26. Nr. 7-8. S. 829--850.

Hinze2005AAA
Hinze, Michael; Sternberg, Julia (2005): A-revolve: an adaptive memory-reduced procedure for calculating adjoints; with an application to computing adjoints of the instationary Navier-Stokes system. In: Optim. Methods Softw.. Bd. 20. Nr. 6. S. 645--663.

Hinze2005POD
Hinze, Michael; Volkwein, Stefan (2005): Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension reduction of large-scale systems. Springer, Berlin. Bd. 45. S. 261--306.

2004

Deckelnick2004SAE
Deckelnick, Klaus; Hinze, Michael (2004): Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. In: Numer. Math.. Bd. 97. Nr. 2. S. 297--320.

Hinze2004SOM
Hinze, Michael; Kunisch, Karl (2004): Second order methods for boundary control of the instationary Navier-Stokes system. In: ZAMM Z. Angew. Math. Mech.. Bd. 84. Nr. 3. S. 171--187.

Baerwolff2004OOA
Bärwolff, Günter; Hinze, Michael (2004): Optimization of a thermal coupled flow problem. In: WSEAS Trans. Math.. Bd. 3. Nr. 4. S. 794--800.

2003

Hinze2003AGC
Hinze, Michael; Slawig, Thomas (2003): Adjoint gradients compared to gradients from algorithmic differentiation in instantaneous control of the Navier-Stokes equations. In: Optim. Methods Softw.. Bd. 18. Nr. 3. S. 299--315.

2002

Hintermueller2002GOS
Hintermüller, Michael; Hinze, Michael (2002): Globalization of SQP-methods in control of the instationary Navier-Stokes equations. In: M2AN Math. Model. Numer. Anal.. Bd. 36. Nr. 4. S. 725--746.

Hinze2002AOC
Hinze, Michael; Pinnau, Rene (2002): An optimal control approach to semiconductor design. In: Math. Models Methods Appl. Sci.. Bd. 12. Nr. 1. S. 89--107.

Hinze2002OCO
Hinze, Michael; Pinnau, Rene (2002): Optimal control of the drift diffusion model for semiconductor devices. In: Optimal control of complex structures (Oberwolfach, 2000). Birkhäuser, Basel. Bd. 139. S. 95--106.

2001

Hinze2001SOM
Hinze, Michael; Kunisch, Karl (2001): Second order methods for optimal control of time-dependent fluid flow. In: SIAM J. Control Optim.. Bd. 40. Nr. 3. S. 925--946.

Afanasiev2001ACO
Afanasiev, Konstantin; Hinze, Michael (2001): Adaptive control of a wake flow using proper orthogonal decomposition. In: Shape optimization and optimal design (Cambridge, 1999). Dekker, New York. Bd. 216. S. 317--332.

2000

Hinze2000TCM
Hinze, Michael; Kunisch, Karl (2000): Three control methods for time-dependent fluid flow. In: Flow Turbul. Combust.. Bd. 65. Nr. 3-4. S. 273--298.

1999

Choi1999ICO
Choi, Haecheon; Hinze, Michael; Kunisch, Karl (1999): Instantaneous control of backward-facing step flows. In: Appl. Numer. Math.. Bd. 31. Nr. 2. S. 133--158.

Hinze1999OAD
Hinze, Michael; Kauffmann, Andreas (1999): On a distributed control law with an application to the control of unsteady flow around a cylinder. In: Optimal control of partial differential equations (Chemnitz, 1998). Birkhäuser, Basel. Bd. 133. S. 177--190.

1998

Hinze1998OSC
Hinze, Michael; Kunisch, Karl (1998): On suboptimal control strategies for the Navier-Stokes equations. In: Control and partial differential equations (Marseille- Luminy, 1997). Soc. Math. Appl. Indust., Paris. Bd. 4. S. 181--198.

Hinze1998SCO
Hinze, Michael; Kunisch, Karl (1998): Suboptimal control of fluid flows. In: Operations Research Proceedings 1997 (Jena). Springer, Berlin. S. 182--187.

1997

Hinze1997OTN
Hinze, Michael (1997): On the numerical approximation and computation of minimal surface continua bounded by one-parameter families of polygonal contours. In: Appl. Numer. Math.. Bd. 25. Nr. 1. S. 89--116.

1996

Hinze1996OTN
Hinze, Michael (1996): On the numerical approximation of unstable minimal surfaces with polygonal boundaries. In: Numer. Math.. Bd. 73. Nr. 1. S. 95--118.