Fallzahl Standort Koblenz: 0 (Warnstufe Grün) Maßnahmenkonzept

Arbeitsgruppe Scholz - Anorganische Chemie

 


Leiter der AG

Arbeitsgruppe Scholz - Anorganische Chemie

 

Organometallic Chemistry, Inorganic Chemistry, Homogeneous Catalysis, Small Molecule Activation

Our main objective is to understand how the properties of a transition metal complex affect its reactivity patterns and to apply this knowledge to practically important reactions. These reactions include C-C, C-N and C-O bond formations as well as polymerisation of olefins and dienes. We are also exploring the use of new ligands for transition metal complexes with a view to developing new catalysts for both polymerisation reactions and transformations of organic substrates.

Forschungsintereressen

 

Recycling  During the past twenty years rare-earth-based materials and compounds have become increasingly important to all aspects of the technologies that underpin modern-day life. However, the main post-consumer activities - the recycling of rare earths - have not been developed in that time. Up to now, there has been no large-scale recycling of rare earths from magnets, batteries, lighting and catalysts. Therefore, we are looking for chemical and technological solutions which would enable the isolation and separation of rare earth metal ions from process leach solutions accrue in the recycling process of rare-earth-based materials.

 CpTi(MAD)Cl.gifHigh-oxidation-state transition-metal alkylidenes play an important role in industrial processes such as alkene and alkine polymerization and other metathesis reactions. Unlike groups 5 and 6, isolable alkylidene complexes of the group 4 metals remain very elusive. This fact likely arises from the lack of suitable synthetic entries to the reactive alkylidene functionality. Only a handful of group 4 complexes having a terminal alkylidene are known. Recently we found that a hydrogen elimination reaction of 1-aza-1,3-diene titanium complexes shown below leads to a new type of stable alkylidene complexes in which the alkylidene moiety Ti=C is embedded into a metallacyclic structure. Currently we are trying to apply this unique reaction to other metals and complex types.

 
The majority of the organometallic chemistry of titanium and zirconium involves complexes in which the metals are in their highest oxidation state +4. However, for several important chemical reactions complexes with titanium and zirconium in the +3 and +2 oxidation state have been proven as the reactive species. It is well known that 1,4-diaza-1,3-dienes are suitable ligands to stabilize metals in lower oxidation states. Currently we focus our interest to new Ti(+3) and Ti(+2) complexes with these ligands which are well-defined and easily accessible and therefore useful for studying their organometallic chemistry. Ti-Komplex
                                   
 
1,3-Diene complexes of early transition metals and their regio- and stereoselective carbometalations with substrates containing C=C, C=O, or C=N multiple bonds have been investigated by several groups. Less attention was given to complexes bearing N-heterodiene ligands. In our previous studies we could show that the coordination of dianionic 1,4-diaza-1,3-dienes to an electrophilic Sm(3+) ion as well as to Zr(+4) and Hf(+4) results in the specific activation of the diimine skeleton itself and affords an opportunity for a subsequent C-C coupling reaction with a dipolarophile like an organic carbonyl compound. Moreover, we have demonstrated that the reaction of carbonyl compounds with these 1,4-diaza-1,3-diene complexes can be used in the formation of new tridentate N,O,N-bound ligand systems. Now we are interested in whether this method can be used generally in ligand synthesis.
 Li(DAD)2La+2Ph2CO.gif

 

Metal-Organic Frameworks (MOF) are materials in which interactions between metal ions and organic ligands yield 3D structures that can be porous. We are currently investigating the reaction of metal halides with organophosphates in presence of functionalized organic molecules. Some of the crystalline polymeric products have potential in application as MOF. A crucial part of this research is the structural characterization of the newly synthesized MOF's.  

 

 

Leiter der AG

Arbeitsgruppe Scholz - Anorganische Chemie


Mitglied

Arbeitsgruppe Scholz - Anorganische Chemie

Mitglied

Arbeitsgruppe Scholz - Anorganische Chemie

Mitglied

Arbeitsgruppe Scholz - Anorganische Chemie
Chemielaborantin

 

Anorganische Chemie I (M1/C01 - WiSe)

Chemie ausgewählter Hauptgruppenelemente der Gruppen 1 - 4 und deren Verbindungen, Anwendungen ausgewählter Hauptgruppenelementverbindungen in Alltag, Umwelt und Wirtschaft, selbständigen Planung, Durchführung und Auswertung chemischer Experimente, Beherrschung grundlegender Labortechniken und wichtiger Methoden der qualitativen und quantitativen Analyse

Vorlesung: Mi, 08:15 - 09:45 Uhr   Praktikum: Di, 10:00 - 15:30 Uhr

Anorganische Chemie II (M2/C03 - SoSe)

Chemie ausgewählter Hauptgruppenelemente der Gruppen 5 - 7 und deren Verbindungen, Anwendungen ausgewählter Hauptgruppenelementverbindungen in Alltag, Umwelt und Wirtschaft, wichtige industrielle chemische Verfahren und chemische Vorgänge in der Umwelt, Synthese ausgewählter anorganischer Verbindungen und deren Charakterisierung

Vorlesung: Mi, 08:15 - 09:45 Uhr   Praktikum: Di, 10:00 - 15:30 Uhr

Analytische Chemie I (M8/WPCH01 - WiSe)

Probenahme, Probenaufbereitung, qualitative und quantitative Analyseverfahren,  Bewertung von Analysenergebnissen, Qualitätssicherung in der analytischen Chemie, chromatographische Trennverfahren, moderne spektroskopische Methoden und deren Anwendungen auf ausgewählte Stoffgruppen, Strukturinformation und Strukturmodell

Vorlesung: Di, 08:15 - 09:45 Uhr

Anorganische Chemie III (M12/C08 - WiSe)

Chemie der Nebengruppenelemente, Einführung in die Komplexchemie, Ligandenfeldtheorie, Anwendung ausgewählter Verbindungen der Nebengruppenelemente in der chemischen Industrie, Synthese von ausgewählten Salzen und Komplexverbindungen, praktische Anwendung moderner Methoden der strukturanalytischen Charakterisierung

Vorlesung: Mi, 16:15 - 17:45 Uhr   Praktikum: Block (vorlesungsfreie Zeit)

Organometallchemie (M12/WPCH07 - SoSe)

Grundlagen der metallorganischen Chemie, thermodynamische und kinetische Stabilität von metallorganischen Verbindungen, Synthesemethoden, Eigenschaften und Anwendungen von metallorganischen Verbindungen des Lithiums, Magnesiums, Aluminiums, Zinns und ausgewählter Übergangsmetalle, metallorganische Verbindungen in industriellen Verfahren

Vorlesung: Di, 08:15 - 09:45 Uhr