M.Sc. Nick Theisen

Research Associate of the Active Vision Group

Research

My research is focused on hyperspectral image analysis and machine learning in computer vision contexts. This includes semantic segmentation of hyperspectral images using classical methods as well as artificial neural networks.

Theses

I offer bachelor and master theses related to the above mentioned topics. If you are interested just get in touch with me.

Publications


2022

Memmesheimer2022SDM
Memmesheimer, Raphael; Häring, Simon; Theisen, Nick; Paulus, Dietrich (2022): Skeleton-DML: Deep Metric Learning for Skeleton-Based One-Shot Action Recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE. S. 837--845.

vonGladiss2022RO1
von Gladiss, Anselm; Memmesheimer, Raphael; Theisen, Nick; Bakenecker, Anna C.; Buzug, Thorsten M.; Paulus, Dietrich (2022): Reconstruction of 1D Images with a Neural Network for Magnetic Particle Imaging. In: Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. S. 247--252.

vonGladiss2022DAF
von Gladiss, Anselm; Kramer, Ivanna; Theisen, Nick; Memmesheimer, Raphael; Bakenecker, Anna C.; Buzug, Thorsten M.; Paulus, Dietrich (2022): Data augmentation for training a neural network for image reconstruction in MPI. In: International Workshop on Magnetic Particle Imaging.

2021

Memmesheimer2021SSL
Memmesheimer, Raphael; Theisen, Nick; Paulus, Dietrich (2021): SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition. In: 25th International Conference on Pattern Recognition, {ICPR} 2020, Virtual Event / Milan, Italy, January 10-15, 2021. IEEE. S. 4573-4580.

2020

Memmesheimer2020GSD
Memmesheimer, Raphael; Theisen, Nick; Paulus, Dietrich (2020): Gimme Signals: Discriminative signal encoding for multimodal activity recognition. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

Memmesheimer2020RIB
Memmesheimer, Raphael; Kramer, Ivanna; Seib, Viktor; Theisen, Nick; Paulus, Dietrich (2020): Robotic Imitation by Markerless Visual Observation and Semantic Associations. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE. S. 275--280.

2019

Theisen2019VDT
Theisen, Nick; Paulus, Dietrich (2019): Verbessern der temporalen {K}ohärenz in semantisch segmentierten, multispektralen {B}ildsequenzen. In: Püschel, Frank; Stanke, Gerd; Pochanke, Michael: Tagungsband zum 24. Workshop Farbbildverarbeitung. Berlin, Germany: Gesellschaft zur Förderung angewandter Informatik e.V.. Bd. 24. S. 75-85.

Seib2019B3S
Seib, Viktor; Theisen, Nick; Paulus, Dietrich (2019): Boosting 3D Shape Classification with Global Verification and Redundancy-free Codebooks. In: Tremeau, Alain; Farinella, Giovanni Maria; Braz, Jose: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SciTePress. Bd. 5. S. 257 - 264.

2018

Memmesheimer2018R2H1
Memmesheimer, Raphael; Wettengel, Niklas Yann; Debald, Lukas; Eckert, Anatoli; Möhlenhof, Thies; Evers, Tobias; Heuer, Gregor; Theisen, Nick; Buchhold, Lukas; Eisenmenger, Jannis; Häring, Simon; Paulus, Dietrich (2018): RoboCup 2018 - homer@UniKoblenz (Germany). Universität Koblenz-Landau, Fachbereich Informatik. Nr. 4/2018. Arbeitsberichte aus dem Fachbereich Informatik.